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ABSTRACT

Using a three fluid

model, wave equations

are déveloped for the disturbances due to cur-

rent or hydrodynamic force sources in a plasma.

The formal solutions to

the wave equations are

obtained for an elementary current source.. The

power radiated from the
of these solutions and,
which the electrons are
other two constituents,

determined in detail.
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source is glven in terms
for the speclial case in
much hotter than the

the radliated power 1s
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CHAPTER I

INTRODUCTION

Although a good deal of work has been done on
the properties of plasma waves,l‘u there has not
been much effort directed towards the problem of
radiation from sources in a warm plasma. Noted
exceptions are the derivation of inhomogenous
wave equations for a current source immersed in
an isotropic plasma.,5 and a treatment of power
radiated from a current source in an electron
gas.6

In this thesis we first extend the results of
reference 5 to include hydrodynamic force sources.
We then solve the wave equations for en elementary

current source and formulate a procedure for study-

_ing the radiated power. Lastly, we determine the

|
\
!

radiated power for a range of cases for which
solutions to the dispersion relation are avallable.

M.K.S. units are used throughout.
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CHAPTER II

THE PLASMA EQUATIONS

The starting point for our analysis is a set of
three coupled hydrodynamic equations.5 They consist
respectively of the continuity equation, the momentum
transport equation, and the adiabatic energy trans-

port equation.

Pt Ng + Ng V:Vg = O (2.1)
D - da VPq
vt -Ya -HE —_ R v X_Ii) "M 8
F
Ly (¥ -¥) e (2-2)
b &b a b " a
Y 4

- The momentum equation has been modified to - - - - - - - =
include an arbitrary hydrodynamic force source, Fage

In the above, mg, Ng, Qa, Vg and Py are the mass,

number density, charge, mean velocity, and pressure

for particles of type a (a is the species index e,

i, n for electrons, ions, and neutral particles

respectively). The symbols E and H represent
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electric and magnetic field strength and /g is the
permeability of free space. The symbol Vop denotes
the effective collision frequency for momentum
transfer for particles of type a with those of type
b. We will use Ja to denote the total collision
frequency for particles of type a. The collision

frequencies satisfy the relation”?
maNg Yap = mbNb\)ba (2.4)

The symbolngz'is the hydrodynamic derivative

(f% + V:V) and ¥ is the ratio of specific heats for
constant pressure and volume.
In addition to the above we use the Maxwell

curl equations:

Vx§=-/"og-% (2.5)
TxH =€zt (2.6)

In the above €, is the permittivity of free space

and J is the source current plus the conduction

~current and, in a plasma medium, 1s given by

J = e(NyVy - NV.) + Jg (2.7)
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We assume an initially qulescent plasma with no
E or H fleld or ordered velocity and only zero order
pressure and number density. If we then assume a

lwt

small disturbance with time dependence e~ the

other variables in the problem will take the form:

E = E(r)e " (2.8a)
H = H(r)e ¢t (2.8b)
Vo = Va(r)e 1t (2.8¢c)
Pa = Pago + P;(E)e-1Ut (2.84)
Ng = ngo + ng(r)e 1®t (2.8e)

In the above n,, is the ambient number density for

particles of type a and

Pao = NgokTao (2.8f)

where pgo 18 the amblent pressure for particles of
tyre a. If we substitute the linearized variebles
into Equations (2.1) to (2.7) and combine (2.1) with
(2.3) and (2.6) with (2.7) there results

(2.9)
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5
dg _ VP4 Fas
~iVa = o= B g -I‘E)I"’ab(!a;b) v (2.10)
V xE = 104H | (2.11)
V x H =-AweE + eng(Vy-Ve) + Jg (2.12)

Equation (2.9) may serve as the definition of Q.
In Equations (2.9) to (2.12) and henceforth we drop

the e~iwt,
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CHAPTER III

THE TRANSVERSE WAVE EQUATION

It is possible to obtain a wave equation for
the H field using Equations (2.10), (2.11), and
(2.12). Combining Equation (2.11) with tﬂe curl
of (2.12) we obtain

2 42
(v7435) H + eno Vx (Vi-Ve) = - Vx Jg (3.1)

We can eliminate explicit dependence on the vel-
ocities by taking the curl of Equation (2.10) and
combining the result with (2.11). The result is

2
waaqgH  LWWF
"’2§a+1“§"a.b(§a'§b) = - m: &= 4 i 88 (3.2)

vhere Sg = VxVg. Equation (3.2) can now be expanded

and solved for (Si-Se) and the solution substituted

" into Equation (3.1).

There results

2 . C
(V2‘+kT).I'_‘ = -UxJg + iweny § Tn% Vx Fae (3.3)
a
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In Equation (3.3) the c, are given by

2
+ WV, + ¥V
co - in t V) (3.a)

02 + 1w(Ven + Vp)

Ci = B (3.4b)

1w (Vin = Yen)

ch = Dy (3.4¢)
and
2
o w Ho (Vi +Vy + g—g Ven)
k= 45 [1-%2 e
c DT
Dp = (02+1w%)[02+1u Wy + vn)]
+“2uen (Yne = Yie) (3.5b)
and
2
2 _ Nhee
we = m (3- 50)

the electron plasma frequency.

To obtain Equations (3.4) and (3.5) it is
necessary to assume only the relatively modest
condition that the ion and neutral temperatures do

not greatly exceed the electron temperature.
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If, on the other hand, the temperature of the
electrons does not greatly exceed that of the other
two specles Equation (3.5a) reduces to the familiar
form
2
2L (- fe ) (3.6)
c2 w +iw\) ) )

and in each of Equations (3.4) the last term in
the denominator can be neglected. Equation (3.6)
is valld for arbitrary plasma properties 1f the

frequency satisfies the inequality:

25> \)e (')i + 9n) (3'7)

If Equation (3.7) is satisfled, the c, are given by

1
e = 7 o%iwy (3.82)
cy = = Cg (3.8b)
16 (V- )
N T @i iw) (3.8¢)

Here and elsewhere we use "much greater than (»»)"

to denote an 1lnequality at least of order.lmi7me.
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CHAPIER IV

THE LONGITUDINAL WAVE EQUATION

The longitudinal waves can be described by the

varlables Q,. We begin by taking the divergence of

Equation (2.10) and substituting for E from Equation

(2.12). The result written explicitely is

FQé’ rAee Ae1  Aen er
v2 |Q1| 4+ |Ate A11 Ay Qs
LQn Ane Ani Ann | Qn
_ . _ )
-1 (meUéz) 1
eV J 2 2v~1
—== | Aet| + 10| (mUi")
U.2
me €o Ve o 1
| O | | (m, Uy ")
where
@e- 2+:1.wa
Agg = 2
Ua
2
b= 16V,
Aeb = —4 7
a

Wl if ab=el

bdabzz uiQ if ab=ie

0O 1f a or b

9

V' Fes

Ve Fig

V. Fns |

= 1N

(4.1)

(L4.2a)

(L.2D)
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and

U.2 - ¥Pg0
&  ma nao

the a specles acoustic velocity.

We also have

2 _TNgoTgo  Pao

ab = npoToo  Poo
It can easily be shown that

Aeb PAgb = “a Poa

(4.2c)

(4.24)

(b4.2e)

The set of Equations (4.1) can be decoupled by

a matrix diagonalization procedure.

In order to

proceed further we assign the following symbols to

the matrices in Equation (4.1):

Age Aei Aen
[A]= |AMe M1 Aip

Ane Ani Ann_

L.

Qe
(o1~ o
Qn

. -

(4.3a)

(4.3b)
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- - - 5 -1 -
-1 (mgUe™) ™ VeFeq
. 2 "'1 .
[S] - &VJs Hel + 10 (mUy2)=* V-Fyq (4.3c)
me €oUe 0 2,-1 g,
(ann ) F..ns
For future use we also define
1l O 0
[f] =]0 #e o (4. ba)
0O 0 Hean

Bl - [ [ [ (1.v)

We also note at this point that B 1s symmetric

i.e.
By = [F] (k. k)

Equation (4.1) can be transformed to a set of
scalar wave equations by the appropriate simllarity
transformation on the matriX~[A]. Our first step
is to use Equation (4.4b) to transform [}q to the
symmetric matrix Eﬂ. An elementary theorem of
matrix algebra states that a real symmetric matrix
can bé diagonalized by an orthogonal transformation,
the column vectors of the transforming matrix being
the normalized eigenvectors of the matrix to be

diagonalized. It 1is easlily shown that the above
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theorem is stlll correct with the qualification
"real" deleted, provided we properly define

orthogonal. The orthogonallty property is
[XJJT[xk] = JJk (L. 5)

where dyx 1s the Kroniker delta and [%c] 1s the
"k" th eigenvector. If we now form a modal matrix

[M] from the column vectors [X@] we have
[vlp [8] [M] = [4] (4.6)

where [d] is a diagonal matrix composed of the
eigenvalues of [B] which, of course, are also
the eigenvalues of [A]. The "J" th eigenvalue
will be denoted by the symbol kja.

It is thus appropriate to transform the set
of variables [Q] to a new set [¢] by the trans-

formation

[Q] = [»] [] (41 (4.7)

If we substitute Equation (4,7) into (4.1) and
premultiply by [M]T;[P]-l we have

v? [4] + [@] [ = Dy [F7* [s] (1.8)



13
or in a more convenient notation
2 2 -
(V2 + k3) ¢y = 84 (4.9)

where Sy 1s the"f' th element of the column matrix
obtained by performing the matrix multiplication
indicated on the right hand side of Equation (4.8).
Here and elsewhere we do not sum on repeated
indices unless indicated.

To compute the elements of [M] we must first
find the eigenvalues kg by solving the dispersion

relation
det. [A - k21] =0 (4.10)

This is a third order equation in k2 and solutions
are not avallable for completely arbitrary plasma
properties. Approximate solutions are known,8
however, for certain of the more interesting ranges
of plasma parameters. Using those approximate
eigenvalues we can find a modal metrix, valid in

the same range, by the usual techniques.




CHAPTER V

PLASMA ENERGY RELATIONS

Before proceeding with solutions to the wave
equations it is desirable to formulate the rad-
iated power in terms of the variables H and bd‘

The total energy stored in the plasma 1s given by

wed [(H-BE-D)av + T [ [mesra(s) a3sav (5.1)
A a Vg

In Equation (5.1) the first integral 1is energy
stored in the electric and magnetic fields. The
second term 1ls the total energy in fluid motion
with f, being the velocity distribution function
for particles of type a and

to = Vg + Cqg (5.2)

where V, 1s the ordered velocity and c4 the random
velocity of the particles of type a. Performing

the integration over § we have

fé g.fad3§ = f(vg.“'cg*'eﬁa'l’_a) £gd3 & (5.3)
¢ [

14
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Since Va 18 a constant in the integration with
respect to § and the average value of ¢, is zero,
the last term in Equation (5.3) vanishes. Also
we have by definition:

JERE A (5.4)
£
and
mg [ ¢g?ad38 = WgkTy = 3P, (5.5)
&
Combining these results with Equation (5.1) we have:
W= %f[g-_n +ED+35 L PV," + %Pa] av (5.6)
vV a

If we take a partial derivative with respect to
time, substitute in Maxwell's curl equations and

note that
V:ExH = H-VxE - E.-VxH (5.7)

we have
W= ([“V'EX.H_ - JE “‘”E‘;—g'sa +Pg¥g i’a*‘%i’a] av  (5.8)

If we now substitute Equations (2.1), (2.2), and
(2.3) into Equation (5.8) we have:
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W= - Jﬁgx_}_l + Z v- (%Pavaﬁ + gpa)ya] av.

(5.9)

"{,f [a% _p__q._;_a;lg (Va~Yo) - (Xa"_‘_’_b)] av

The last term in Equation (5.9) is negative
definite and represents the energy fed from ordered
motion into thermal motion via collisions. This
energy is, of course, still in the medium. Had we
used a more complete energy transport equation,
including the effect of collisions, rather than
the adiabatic version we would have an esgqual
positive definite term showing the energy increase
in thermal motion. In this same connection it
should be noted that the term -J:E in the integrand
of Equation (5.8) 1is not present in Equation (5.9).
This term represents an energy transfer between the
electric field and fluid motion and is cancelled by
a like term resulting from the substitution of the
momentum equation into Equation (5.8).

If we omit the heating term involving the
collision frequencles and apply Gauss's'Theorem,
the rate at which energy crosses the boundary of a

volume is seen to be:
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* 2
W= '![—E-’d-l[ + é (Paga + gpa) ‘_’a]' n ds (5.10)

Equation (5.10) is then time averaged over one
period of the applied frequency. It is, of course,
necessary to retaln terms to second order in
computing power.,

The electromagnetic term in the integrand
of Equation (5.10) is easily time averaged to yield

Sem = % Re ExH* (5.11)

The second term in Equation (5.10) ie third order

in Vg so it 1s discarded. The third term gives

two second order contributions, one involving the
first order pressure times the first order velocity,
and one involving the zero order pressure times the
second order veloclty. To avoid dealing with second

order quantities we write

Pg
3 P¥q = 3 (;;) Pa¥a (5.12)
Expanding.%& by use of the adiabatic energy trans-
a

port equation we have, to first order
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Pa _Pao [1+ Py/Pao _ Fao + 2 Pa (5.13)
pza. Pao 1 +% Pa/Pao paO 5 Pao
hence
5 _ Pao , 2 Pg
% Pg Vg = 'g PaVa [:Pao * 5 Pao (514

Transforming the surface integral of the first term
back to a volume integral by use of Gauss's Theorem
and substituting from the continuity equation

we have

= P P
a0 5 *ao
_f .g 5____ P Vacg ds 5 -5__ ch Vadv
8 a0 a0

5 Pg 3P
I e em—— -~ gV 5.15
2 Pao ;{' Y ( )

o

which averages out to zero since, on the average,
the amount of fluid in a volume is unchanged. Time
averaging the second term in Equation (5.14) in the

usual way the fluid energy flux 1ls seen to be

Sp1 =¥ Re I paVgt (5.16)
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Equations (5.11) and (5.16) are combined to yield
the total energy flux:

= 3 Re [EXE* + 3 paza*] (5.17)

We can modify Equation (5.17) so that S depends
only on H and Qg by writing E, p', and V in terms of
these variables. The dependence on E and p' can be
eliminated immediately by use of Equations (2.9)
and (2.12), thus:

5 = ARe {en° (Vi-Ve) - 'i_" VxH} x H*
(5.18)
+ 3% Z Pao R Ya*
a

We have used Equation (2.12) in the source free
form and thus intend Equation (5.18) to be valid
everywhere in the plasma excluding the source.

To eliminate the V, we consider the source
free form of Equation (2.10) with E and p} replaced
by the use of Equations (2.12) and (2.9) respectively.

3 r - porwns' ——
Aee Aet Aen | Vet 1
2 V xH
A A A ) = - ev Al
ie Ai1 Sin SiT ei et (5.19a)
Ane Any Ann nr 0
N 4 L .J L o
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rhee Aey Aeﬂ_ r-XeLT —er
Ate Ai1 Ain ViL | = -y |QU (5.19b)
Lﬁne Ani Ann‘ __XhL_ _Qn_

In Equations (5.19) we have split the velocity into
& prart that i1s the curl of a vector and is related
to the transverse waves and a part that is the
gradlent of a scaler and is related to the long-

itudinal waves, i.e.
Va = Va1 + Var, (5.20)

By use of Equation (5.20) the energy density S

decomposes naturally into four parts:

8 = Sqpp + Spp, + Sy + Bpp, (5.21)
where
S % Re -f-—n°e (Vir-VerT) - -1-—-1 VxH | xH* (5.22a)
i noe
St = ¥ Re | 1o (Vap-Yer) | x B (5.22b)
_ Y v X (5.22¢)
Spp = % Re L'ﬂ»’ Y Pao Q@ Yar
a
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Sy = % Re [‘fﬁ Z..: Pao l’a; :, (5.224)

We define . [g] = Dﬂ‘l and Ggp = the "ab"th element
of[G] .-’ We then invert [r], solve Equations (5. 19)
for the fluid velocitlies and subétitute the results
into Equations (5.22), obtaining:

104, i
Srr = % Re P (UxH) xH (5.23)
and
Str + Spr = %Re'ril'ff'g Zb (G1p-Gop) V xQupH* (5.2L)

The reason for the split of S into four parts
is now evident. The first part, Sqp, involves only
the H field and can thus be characterized as power
in the transverse wave. The second and third parts,
ST ar;d S11, involve products of transverge with
lsngitudinal potentials and make no net contribution
t!o radiated power. This can be demonstrated by
recalling that S, + Si7 enters power calculations
as the integrand of a surface integral. Using
Gauss's Theorem ﬁe can write the power carried by

these waves as
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Pyp + Pqp, = Gop) VxQupH* aV  (5.25)

which vanishes since the integrand is the divergence
of a curl.

The last term in Equation (5.21) is best
handled in matrix notation. Equation (5.22d) can
thus be written:

siL = + 3 Re I322 [a [P] " [d] v [q] (5.26)

If we substitute Equations (4.6) and (4.7) into
Equation (5.26) we have:

St =~} Re T2 [] [M] [] [d v [¢] (5.27)

The above expresslion does not, in gensral,

reduce to canonical form in ¢J. The reason 1s

that [M] is not orthogonal in the hermitian sense

unless we neglect collisions thereby making all of

the variables of the problem real. We do not

evaluate the elements of [M] or the above

expression in the general case since a general

solution to the dispersion relation is not available,
There are two special cases for which solutions

to the dispersion relation are available. The first and

most obvious is the collisionless case, for whicﬁ
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the neutral wave 1s completely uncoupled from the
other two, thus reducing the order of the disper-
slon relation. The other case for which good
approximate solutions to the dispersion relation
are available8 is that in which the electrons are
much hotter than the other two constituents.

These cases will be treated separately in a later

chapter.



CHAPTER VI

SOLUTIONS TO THE WAVE EQUATIONS
FOR AN ELEMENTARY CURRENT SOURCE

The methods of solution of the transverse
wave equation are quite analogous to the equiva-
lent free space problems and the longitudinal
wave equations necessitate little modification.
The usual procedure is to solve the equations
for an elementary source and use the result as
& Green's Function for more complicated sources.

We will obtain the solutions for an elementary

current source described by

Jg = Ay I (2) 2, (6.1)

where Ap is an amplitude constant with dimensions

of amp-meters. The transverse wave equation for

this source 1is

(V2 + K§) H

- Ao Vxd(1) &,
(6.2)

A, 8; x VA (1)

The longltudinal wave equation for the

elementary current source is

24
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ehAq

@o+kg) by = - (Xy3-A1%oy) a,-vd(r) (6.3)

me €V e2

where Xij is the "i"th element of the "j"th
normalized eigenvector.
The solutions are obtained as follows:

We define the auxiliary functions‘# and QU such that
H=+Ag 8, xv¥ (6.4)
and

EAO

me €oUe

by = - (X13-A1 Xo3) 5 87°V0y (6.5)

Since any linear vector operator commutes with

the Laplacian we have
@2+ kp2) Y= ~d(x) (6.6a)
and

(72 + kje) QJ: ‘J(_{) (6‘6b)

The solutions are well known and are glven by:

Yy = ﬁ%? e 1KTT (6.7a)
' 1k
0y = ‘lﬁ;‘r? e 3T (6.70)
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Combining Equation (6.7a) with (6.4) and (6.7b) with
(6.5) we obtain:

ikpr
H = Ao sin 6 (tky - 1) & 4y (6.8)
» eA, cos O (Xy4-H yXs4) ikyr
by = - — g2 (tiy-2) S (6.9)
me€oUe

The curl of Equation (6.8) and the gradient of
Equation (6.9) are computed and substituted into
Equations (5.23) and (5.27) respectively in order
to calculate radiated power. This calculation,
for the more complicated longitudinal waves, 1s
deferred to the next chapter. For the transverse
wave we retain in our power density only the term
which dominates at a distance, from the source,
large compared to a wavelength. The source
indeed transfers energy to the plasma via the near
field terms, but for waves which are not too
strongly attenuated the energy dissipated in the
near field is small. Thus, outside the source
reglon, Equations (5.23) and (6.8) carn be combined
to yleld:

2
_ U'L(OAg sin<© Re kT e_QIm.(kTr)
Spr = ar 32(1rr)2

(6.10)
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If we consider only the usual conditions for which
@We >> Yo then the wave number is almost pure real
above the plasma frequency and almost pure imag-
inary below it. Thus, at frequencies below the
plasma frequency the transverse wave 18 strongly
damped and no apprecliable power is radisted beyond
the near field. At frequencies above the plasma
frequency the wave is lightly demped and
\ng-weé weme?

kp 2 + (6.11)

c 2uwe \l w. aéé

For (d?--ue2>> ))elde2 Equation (6.10) becomes:

w
I 2 2 2
S pr=a Aoasinae WA W™= oxp Yele T (6.12)
2 =TI T e—— .
32¢(mr)?2 weleZiw?

The total power carried away by this wave can be
found by evaluating a closed surface integral.

We shall choose a surface close enough to the

gource that the exponential damping can be neglected,
yet beyond the range of the near field. The result

is:

Aozwlolw - &

Ppp = T (6.13)
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This, as expected, 1s in agreement with the result
of Ref, 6% in which only electron motions are

congidered.

*There is a factor of 2 difference due to a

trivial error introduced in Equation 35 of Ref. 6.



CHAPTER VII

RADIATION IN LONGITUDINAL WAVES
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In order to obtaln useful solutions to the
longitudinal wave équations we must first have
the roots of the dispérsion relation (Equation
(4.10)). As stated previously, approximate roots
are avallable for two speclal cases., The first
of these? which we shall call Case 1 applies to
all situations in which collisions can be
neglected completely., Solutions to the disper-

8

sion relation are also avallable” for a plasma
in which the electrons are much hotter than the
other two constituents. We shall divide this
category into two éases: Case 2 if the degree
of ionization is such that pgy > ppo, and Case
3 1f the degree of ionization is so low that
Pno >> Peo in spite of the high electron temper-
ature. We will take these three cases 1n order,

first calculating the modal matrices and then the

power flow.

29




30

CALCULATION OF MODAL MATRICES

Case 1:
If we neglect collisions entirely the exact
roots of the dispersion relation (Equation (L4.10))

are given by:

‘ 2
42 P-we?  w2-wy? 4 [og-weQ a?-wie] welan 2

T = + + + =5
2Uge 2Uy° 2U 2 2U4° Ug=Uy
(7.1)
2
2 w
n

Since there are no collisions, the neutrsal
rarticle wave will not be excited by a current
source and’Equation (7.2) is of academic interest.
Equation (7.1) reduces to a form which 1s more
easlly interpreted if we separately examine different
portions of the spectrum.

If @2 >> (1 +/41§)012 we have:

2_..2
K1° 2'6—’-;1—4%- (electron wave) (7.3a)
e

@w?
a-i'g (1on wave) (7.3p)

n

kp?
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Using these approximate roots the modal matrix
can be calculated by the usual methods. In this
frequency range it is given by:

1 0 0
M= 1o 1 0 (7.4)
0 0 1

If, on the other hand, w2<<¢ (1 +.4 2)w 2 the

two roots of Equation (7.1) reduce to:

2
k12 = g-2 ("ton" wave) (7.52)
UP
PR
k22 & - (damped electron wave) (7.5b)
q”?
where
5 Tk (Te+Ty)
Up~ = ng(mg+my) (7.5¢)
and
2 JTkTeTy
= .5d
=TT (759
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The first of these is an oscillation involving both
electrons and ions (although it is often called an
"ion" wave) while the second root, also involving
both electrons and ions, is an evanescent wave

(for which there can be no power flow). In this

frequency range the modal matrix 1s given by:

2
1 A4 e(1 +-%ﬁ;g) 0

[v] = /‘ie@%%) 1 0 (7.6)

0 0 1

In calculating the matrix elements of Equation
(7.6) we have retained all terms to the order of

@ (which is assumed to be very small). The

wy?2

reason for this is that using only the dominant
terms -in the appropriate eigenvector would give
us & null result for the amplitude of the "ion"
wave,

Case 2:

If the temperature of the electrons is much
greater than that of the other two specles, and
the degree of ionizatlon is high enough that
Peo?>Pno» the high frequency @ug>>¢i2) roots
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are given by:

we-we2+i Wy

2 - e
k = electron wav
1 T ( e)
(7.7a)
2 ~w°
k,© = -I-I? (1on wave) (7.7v)
k2’=‘"‘)2 (neutral wave) (7.7
The modal matrix we obtain for this set of
conditions is given by:
- -
1 Ay e(¥B-1w)ye) -1 eVne
w? we
[’ ] Hyo(WB-10)) ) 1 -1w41nY1nU.2
M| = : 22 UQU;[?
lwinevne Ly nVinU-2
w? 1
WUy

(7.8)
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where

U;2u,.2
2 1 Yn
U.< = mU12~Un2 (7.9)

The roots for the same plasma properties and

the frequency range l)n“w“‘{ are given by:

!
k12 2’% (1 + ia.J‘_).'.) ("1on" wave) (7.10a)

2 _ -y 2+iwyy

kp = — (damped plasma wave) (7.10b)

i

2Hiw
k32 r~ -"—%1?-%‘- (neutral wave) (7.10c)

n

where
Y TR SO B (7.11)
YV =Vp+ V4 + m en .
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- The modal matrix for this frequency range is given by:

— -
w2 —1ap o)
1 -/lie(l-i-w—1§) _QTS_E
2 -1 v
M = Ae(14455) 1 ———uf%n-—i-r—’ (7.12)
» by Wi
1a)t4,e¥n LgynVin 1

In computing the results for Equation (7.12) it
was agaln necessary to calculate a higher
approximation for Xoj7 to avold obtaining a null
result for the weakly driven "ion" wave (with
rhase veloclity Up). The same correction was
aprlied to X3o in the interest of consistency.
The low frequency W<<),) roots for this
case are modified somewhat from the above. The
"{on" wave becomes one which involves motion of

all three speciles the root belng glven by:
k = 1+ total acoustic wave T.13
1 U [ VA ] ( ) ( )

The damped plasma wave is still evanescent in

this range and still has the same root (Equation



Ty .

——— PPNy 4442 Wy $Y—_ Wy
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(7.10b)). The neutral wave also has the same
root as above (Equation (7.10c)). The modal
matrix for this range is given by:

[_ p—
1 ”Aie HAoe
2 v
e « (1.|_._§“ ) 1 Zne _ 19A4nVin .1k
~/he 4@& 1
Hei i

In Equation (7.14) we have calculated a higher
aprroximation for only these elements (Xo; and X23)
which would otherwise give a null result for
weakly driven wave amplitudes.

Case 3:

If the degree of ionization 1s so low that
Pno”>”> Peo in spite of Te)d Ty the results of Case 2
must be modified at low frequenciles. Specifically,
for #<</' the roots of the dispersion relation
become:

2 10V’

kq a—*—-l-J—g (damped "ion" wave) (7.158)
P

2 -012+iwx)i

ko = Uiz (demped plasma wave) (7.15b)
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ko2 ‘;“’2 (1+i—“-'-4) (total acoustic wave)(7.15¢c)
> Tip O (o '
where
Mg
JU" = Vin * w5 Yen (7.154)
2 2
Ur- = P1+Fn (7.15e)
2
A - (UTz‘Une)

7.15¢
i (7.351)

The modal matrix is glven by:

1 "/(ie /‘en
L dwdin w2ln
~ l%———ﬁ— 14—z
[M] = ﬂie( wi ) 1 /(in( wjfﬂneQJn
lupsnin

(7.16)

We have agaln calculated a higher approximation

only for the elements X and Xps3.
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POWER RADIATED

The modal matrix is substituted into previous
results In two places. Each column vector, along
with the appropriate elgenvalue is substituted
into Equation (6.9) to find the longitudinal wave
potentials ¢J' In addition the modal matrix is
substituted into Equation (5.27) in order to find
the longitudinal wave power density.

It can be directly verified that, for each
modal matrix calculated in this chapter, the
dominent terms of the matrix product [NI];.[M] are
on the dlagonal. That is, the diagonal terms are
all approximately unity and the off dilagonal terms
are 8ll much smaller. As a result, for all of the
cases we are considering here, Equation (5.27)

reduces to

1¥
SiL g?% Re a{_;lgﬁ b5* 7y (7.17)

The radiated power corresponding to each term
in Equation (7.17) is found by substituting the
solutions for ¢j into Equation (7.17) and taking
a closed surface integral near enough, to the

source, to neglect the exponential decay factor.
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The general result is:

2 2 2
Ao a%,Abc

2
Prry = Tonay 2 X435 - He1Xpg| Re ky (7.18)

We note, at thils point, that all of the
solutions to the dispersion relation do not
correspond to propagating waves. In each case
the so called "damped plasma wave" (Equations
(7.5b), (7.10b), and (7.15b)) 1is evanescent and
cannot account for any power flow.

The appropriate elgenvector is substituted
into Equation (7.18) in order to determine the
power carried away by each wave. Results are
computed separately for each frequency range
and each case. The high frequency results for
all these Cases are identical except for the
absence of & neutral wave for Case 1. Hence, for

all Cases and<02>)aﬁ2(lﬁA&e2) we have:

A02“%2A5°2 Re 02"052

(7.19)
12U = Ue

PLL1 =



To)

2,24 .2
- A "ah A
Prio = 121’,~Ui3 (7.20)

Also for &> 012(l+/§_e2) and Cases 2 and 3 we

have:

2
2,,2 2 2
p AW et | 4y VinU- 01
LL3 © 12T U=y, Wy, @ (7.21)

The three waves, in this frequency range, are
simply electron, ion, and neutral sound waves.
As expected, Equation (7.19) agrees with the
result of Ref. 6 in which only electron motion
was consldered.

In the lower frequency ranges we consider
each case separately.

Case 1:

In a collisionless plasma there 1s only one
wave excited by a current source in the frequency
range "‘2““’12(1+/€l.e2)° There can be no coupling to
the neutral wave and the electron wave is

evanescent. The power in the "ion" wave is

given by:
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Bo2w 2 c2al
P = T.22
B o a2, W g (7-22)

This result decreases very rapidly as @ becomes
small compared to «y. As mentioned earlier,
retaining only the dominant term in each element
of the appropriate eigenvector would lead to a
null result for this wave.
Case 2: Te>?>Tys Tn3 Peo>>Pno

In the frequency range1£<<ékavi both the
"ion" and neutral waves can propagate and both
are excited by a current source. The power in

each 1s given respectively by:

P o~ A02/¢°c26}4 (7 23)
Ll = 1oma,?y 3 '

(7.24)

? ~ A %ﬂ 4l%“b°2 ,4he”n ,AEnV&n/)
LL3

1270, 2u,, @,2

In the low frequency range (#<¢V,) the ions
and electrons become coupled to the neutrals and
the character of the "ion" wave changes to s

total acoustie wave. The associated power flow
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is given by:

LLl = 12’”*0)121]1)2“,1‘ (7.25)

In this same frequency range the power in the

neutral wave 1s given by:

2,, 2 2 p
Pria = &Y ApTWpAC f_d%“enynj (7.26)
3 J ¢ 12Twvulu, @y ]
Case 3: Te»Ti, Tn; Ppo> P

eo
In the frequency renge V'<¢ew« @; both "ion"
and neutral waves can propagate and both are
exclted by a current source. The result for
power in the "ion" wave is identical to the
equivalent result for Case 2, i.e., Equation (7.23).
The power in the neutral wave is also given by
Equation (7.24). Forw«V' however, the results are
quite different than those of Case 2., Here the
"{on" wave maintaine its identity all of the way
down to ¥=0 and the neutral wave turns into the

total acoustic wave. The power in the "ion" wave

is given by:

W 2,2 2 2 2
WV AW w My
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and the total acoustic wave power is:

2
P = AOQUQQ/‘ oce /(en36)2 Mn
LL3 121 UeQUT w 12 Vn

(7.28)

Qualitative results for power radlated are
depicted graphically in Figs. 1, 2, and 3 for
Cases 1, 2, and 3 respectively. All curves are
normalized relative to the assymptotic value of

the power in the electron wave, 1i.e.

24 2
_ Ay /%ca
© " 12T Ue3

P (7.29)

The segments of curves are connected by
dashed lines in the frequency ranges where
calculations were not made. The curves for each
wave are labeled according to the high frequency
identity of the wave.

In all cases the ion wave appears to be the
most effective in removing power from the source
at high frequencies. For frequencies not too far
above Wy, the electron wave also carries away much

more power than the transverse wave,
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At lower frequencies 0U<<&i) the electron
acoustic and transverse waves cease to propagate.
The lon wave turns into the "ion" or electron-ion
acoustic wave which, as noted earlier, is very
weakly coupled to a current source. (Recall that
it was necessary to use an improved approximation
to the modal matrix in order to obtain a non-zero
result for this wave.) As can be seen from the
curves the amplitude of this wave falls off very
rapidly with decreasing frequency.

In Case 2 the plasma acoustic wave becomes
the total acoustic wave at very low frequency,
whereas in Case 3 the neutral wave becomes the
total acoustic wave at low frequency. In both
cases the wave power has the frequerncy dependence
wh which 1s characteristic of these weakly
driven waves.

Another interesting aspect of the curves 1s
the null result (to this level of approximation)
for the neutral wave at one particular frequency.
Collisions with electrons and lons always oppose
each other in establishing this wave and apparently,

at thig frequency, their effects cancel.



Fig. 1. Radlated Power for Case 1

A
B.
C.

Transverse wave
Electron wave
Ion wave
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Fig. 2. Radlated Power for Case 2
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Neutral wave
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Fig. 3. Radlated Power for Case 3
A, Transverse wave
B. Electron wave
C. Ion wave

Neutral wave



CONCLUSION

In this thesis we have formulated a procedure
for treating radiation from sources in a partly
ionized gas. We have carried the method to 1its
conclusion for the case of an elementary current
source, calculating the power carried away from
such a source by each wave and noting which waves
can be strongly excited by a current source. The
fact that certain waves cannot be strongly excited
by a current source, lrrespective of source
geometry, is quite consistent with the accepted
physical picture of these waves. All of the waves
for which this fact was noted (the "ion" waves for
@< end the total acoustic waves for w —»0)
involve collective, in phase, oscillations of
either electrons and ions or electrons, ions, and
neutrels. (Moreover, as the frequency decreases
the phase coupling of electrons and ions gets
better; hence the strong dependence on frequency.)
Since a current source exerts oppositely directed
forces on electrons and ions it should not be

expected to generate such oscillations efficiently.
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The relative magnitudes of power in our high
frequency results for electron, ion, and trans-
verse waves 1s probably unrealistic for most
physical problems. The high proportion of power
in the short wavelength ion waves is due to the
assumed smallness of the source. The results of
Ref. 6 for electron acoustic and transverse waves
exclted by the same type of source are identical
to ours. It is further shown in Ref. 6, however,
that as the source dimenslons are increased beyond
the wavelength of the electron wave, the proportion
of power in this wave is decreased. As the size of
the source approaches or exceeds the transverse
wavelength the transverse wave dominates.

It is expected that increasing the source
dimensions would effect our results in a like manner.
Although no calculations have been made, 1t seems
plausible that the ion wave would dominate only
until the dimensions of the source approached the
electron acoustic wavelength. The electron wave
would then dominate until the scurce dimensions
approached the transverse wavelength at which point

the transverse wave would carry the most power.
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